
Way to GNU/Linux on ARM

Xingda Zheng

Contents

- 1. Brief history about ARM
- 2. Mess in Linux on ARM
- 3. Solutions to the mess
- 4. Future development

What's ARM

- ARM can be ARM Holdings
- ARM can also be ARM Architecture
- ARM = "Advanced RISC Machine"

- ARMv1
 - ARM1
- ARMv2
 - ARM2 Cloned by OpenCores now, called Amber
 - ARM3
- ARMv3
 - ARM6
 - (ARM610 used by Apple Newton)
- ARMv4T T means Thumb
 - ARM7TDMI traditional SoC core, even used by GBA

- ARMv5TE MMU introduced
 - ARM9 Traditional "Embedded Linux" Core
- ARMv6 initial SIMD support
 - ARM11 Start of Thumb2 and Multiprocessor

- ARMv7A "Cortex"ize
 - Introduce VFPv3, NEON
 - Cortex-A8
 - Cortex-A9 MPCore
 - Cortex-A5 low-end solution
 - Cortex-A7/15 big.LITTLE, Virtualization

- ARMv8A 64-bit
 - NEON now fully IEEE-754 complicant
 - "big" core started to evolve fastly
 - Cortex-A57, A72, A73...

Brief History of ARM Linux

- 1.0.x Early trial by Acron on Acron A5000. Built on RISC OS with its compiler. Kernel tree largely modified to suite RISC OS. Impossible to merge back.
- 1.1.59 Elegant ARM support in Linux kernel because the support of ARM in GCC/Binutils.

Brief History of ARM Linux

- ARMv4T can run uClinux
- ARMv5TE is suitable for running full Linux
 - Currently the most old cores supported by Debian.
- "Embedded Linux" on ARMv5TE
- Birth of Android

Brief History of ARM Linux

- ARMv6
 - OMAP2 (with ARM11) is chosen by Nokia for Maemo
- ARMv7A
 - A High-optimized instruction set.
 - "armhf" in Debian.
- ARMv8A
 - 64-bit.
 - "arch/arm64/" instead of "arch/arm/" in kernel
 - ABI revolution. Considered as a new architecture.

Mess: What's a SoC

- SoC System on Chip.
- IP core model.
- Cortex series is just IP core. So do Mali series and PrimeCell series.

Mess: Boot

- On IBM/PC:
 - Power Up \rightarrow BIOS/UEFI \rightarrow GRUB \rightarrow Linux kernel
 - Standard interface

- On ARM:
 - No such standard interface widely accepted now

Mess: Boot

- Allwinner A33 SoC:
 - Power Up → Internal BROM (mask ROM) → Boot0 → U Boot → Linux kernel
- Qualcomm APQ8016 SoC:
 - Power Up \rightarrow PBL (on DSP) \rightarrow SBL \rightarrow LK \rightarrow Linux kernel
- Broadcom BCM2836 SoC:
 - Power Up → Proprietary Bootloader (on GPU!) → Unknown loader (on ARM core) → Linux kernel

Mess: Boot

- Problems:
 - No generic Bootloader.
 - No generic kernel storage standard.

Mess: SoC and board

- Multiple boards per SoC
- Early kernel uses a .c file per board
 - A zImage/uImage per board Disaster to distributions
 - A machine ID per board complex
 - Source modify and kernel recompilation when board changed

Mess: SoC and board

- Why?
 - Innumerable Buses
 - AMBA inside SoC
 - I²C, SPI outside SoC
 - Lack of standard
 - On x86, DSDT table in ACPI solved the difference

Mess: Out-of-mainline source

- Low quality of BSPs
 - Lots of BSPs are for Android
 - Dirty and unmainlineable code
- Lower quality of Vendor sources
 - For example, Huawei
- Android problem
 - Some Android drivers keep to be unmainlined
 - Android does not require higher kernel version (3.4 for Marshmallow is also allowed)

Mess: Lines out-of-mainline table

Phone	Manufacturer	SoC Vendor	Lines out-of-mainline
G3	LG	Qualcomm	2.616M
Galaxy 4	Samsung	Qualcomm	1.795M
Galaxy S5	Samsung	Samsung Exynos	1.100M
Xperia Z3	Sony	Qualcomm	1.794M
Xperia C	Sony	MediaTek	1.935M
E2	Acer	MediaTek	1.411M
Zenfone 6	Asus	Intel Atom	2.163M
P6	Huawei	HiSilicon	2.659M

表格来源: http://elinux.org/CE_Workgroup_Device_Mainlining_Project

Mess: LINUS IS ANGRY

- https://lkml.org/lkml/2011/3/17/492
- "Gaah. Guys, this whole ARM thing is a f*cking pain in the ass."

- Originated from Sun Open Firmware, then abstracted by Linux.
- Used by Embedded PowerPC with OF.
- Chosen to be used on ARM.

- What's Device Tree
 - Device description
 - Like a tree
 - Structured
 - Can be "flatten" to storage

- Example of the opportunity of DT:
 - AOSC OS armel sunxi boot
 - Provided 2 kernels for more than 6 SoCs, 20 boards.
 - Raspberry Pi DT Overlay
 - Easy to adapt add-ons

- DT structure:
 - Really like a tree
 - Everything starts at a "/"
 - Device nodes can be embedded to bus nodes, when the device is connected to the bus.

Solution by another kernel

- Windows NT on ARM
 - Force UEFI and ACPI
 - Use DSDT for device structure
 - Use HAL Extension for special devices

Future

- ARM officially choose UEFI
- Server standard is introduced
- Standard interface for communication between ARM kernel and firmware, for power, regulators, etc

Thanks!

Now you can point out problems and wait for further improvement by us!

